Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome

نویسندگان

  • Akira Sassa
  • Nagisa Kamoshita
  • Yuki Kanemaru
  • Masamitsu Honma
  • Manabu Yasui
  • Komaraiah Palle
چکیده

Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro repair of oxidative DNA damage by human nucleotide excision repair system: possible explanation for neurodegeneration in xeroderma pigmentosum patients.

Xeroderma pigmentosum (XP) patients fail to remove pyrimidine dimers caused by sunlight and, as a consequence, develop multiple cancers in areas exposed to light. The second most common sign, present in 20-30% of XP patients, is a set of neurological abnormalities caused by neuronal death in the central and peripheral nervous systems. Neural tissue is shielded from sunlight-induced DNA damage, ...

متن کامل

A novel role for transcription-coupled nucleotide excision repair for the in vivo repair of 3,N4-ethenocytosine

Etheno (ε) DNA base adducts are highly mutagenic lesions produced endogenously via reactions with lipid peroxidation (LPO) products. Cancer-promoting conditions, such as inflammation, can induce persistent oxidative stress and increased LPO, resulting in the accumulation of ε-adducts in different tissues. Using a recently described fluorescence multiplexed host cell reactivation assay, we show ...

متن کامل

p53 Binds and activates the xeroderma pigmentosum DDB2 gene in humans but not mice.

The DDB2 gene, which is mutated in xeroderma pigmentosum group E, enhances global genomic repair of cyclobutane pyrimidine dimers and suppresses UV-induced mutagenesis. Because DDB2 transcription increases after DNA damage in a p53-dependent manner, we searched for and found a region in the human DDB2 gene that binds and responds transcriptionally to p53. The corresponding region in the mouse D...

متن کامل

Triple helix-forming oligonucleotides target psoralen adducts to specific chromosomal sequences in human cells.

The ability to target photochemical adducts to specific genomic DNA sequences in cells is useful for studying DNA repair and mutagenesis in intact cells, and also as a potential mode of gene-specific therapy. Triple helix-forming DNA oligonucleotides linked to psoralen (psoTFOs) were designed to deliver UVA-induced psoralen photoadducts to two distinct sequences within the human interstitial co...

متن کامل

Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis.

UV-damaged DNA-binding activity (UV-DDB) is deficient in some xeroderma pigmentosum group E individuals due to mutation of the p48 gene, but its role in DNA repair has been obscure. We found that UV-DDB is also deficient in cell lines and primary tissues from rodents. Transfection of p48 conferred UV-DDB to hamster cells, and enhanced removal of cyclobutane pyrimidine dimers (CPDs) from genomic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015